PredictionCalibration
PredictionCalibration
The function predicts the probability based on the calibration model.
Parameters:
- x_data:
pd.DataFrame
A series of predictions of the raw models. - model:
LogisticRegression
A Logistic Regression Model for calibration. - logprob:
bool
A boolean variable whether to calculate a logarithm of probabilities.
Returns:
- pred:
np.ndarray
A NumPy array of the calibrated probabilities.
Exceptions:
- TypeError:
Raised ifx_dataparameter is not a pandas DataFrame object.
Raised iflogprobparameter is not logical.
Example:
import pandas as pd
from sklearn.linear_model import LogisticRegression
from combat.calibration import PredictionCalibration, CalibrationModel
# Sample input data
x_data = pd.DataFrame({'A': [1, 2, 3, 4, 5], 'B': [6, 7, 8, 9, 10]})
model = CalibrationModel(*args)
logprob = False
# Predict calibrated probabilities
pred = PredictionCalibration(x_data, model, logprob)
print(pred)