CalibrationModel
CalibrationModel
The function creates the calibrated model.
Parameters:
- x_data:
pd.DataFrame
A pandas DataFrame with explanatory variables. - y_data:
pd.Series
A pandas Series with discrete dependent variable. - penalty:
str, optional, {None, 'l1', 'l2'}, default = None
Regularization for Logistic Regression model. - alpha:
float, default = 0.5
A float variable for regularization. - fit_intercept:
bool, {True, False}, default = True
Whether to fit intercept in the Logistic Regression or not.
Returns:
- model: Logistic Regression Model
Exceptions:
-
TypeError:
Raised ifx_dataparameter is not a pandas DataFrame object.
Raised ify_dataparameter is not a pandas Series.
Raised iffit_interceptparameter is not logical. -
ValueError:
Raised if lengths ofx_dataandy_dataare not identical.
Raised ifpenaltyparameter is not in [None, 'l1', 'l2'].
Raised ifalphaparameter is not a float from 0 to 1.
Example:
import pandas as pd
from combat.calibration import CalibrationModel
# Sample input data
x_data = pd.DataFrame({'A': [1, 2, 3, 4, 5], 'B': [6, 7, 8, 9, 10]})
y_data = pd.Series([0, 1, 0, 1, 0])
penalty = None
alpha = 0.5
fit_intercept = True
# Create Calibration Model
model = CalibrationModel(x_data, y_data, penalty, alpha, fit_intercept)